Instrument for Measuring Cryo CTE

Chandra S. Vikram and James B. Hadaway

Center for Applied Optics
The University of Alabama in Huntsville
Huntsville, AL 35899

MIRROR TECHNOLOGY DAYS PRESENTATION

September 16, 2003

BACKGROUND

- Need of accurate material properties at cryogenic temperatures
- One important property is the Coefficient of Thermal Expansion (CTE)
- Generally accuracy of 0.1-0.5 ppm is needed to model & evaluate potential CTE non-uniformity contributions to cryogenic figure distortion
- Commercial sources about ±2 ppm
- JPL generally much better (dependent on CTE range)

THE APPROACH

$$\Delta\theta = L(\alpha_{ref} - \alpha_{sample}) \Delta T/D$$

$$\left(\frac{\Delta L}{L}\right)_{sample} - \left(\frac{\Delta L}{L}\right)_{ref} = -\frac{yD}{2\lambda L}$$

POSSIBLE CAPABILITY WITH A PSD

The 1 cm \times 1 cm detector can measure 0.5 μ m laser beam shifts in the cross-section. With L = 2.54 cm, D = 2.54 cm, 1 = 270 cm, we obtain 0.09 ppm $\Delta L/L$ sensitivity.

Further enhancement – changing 1, D, optical magnification

For this example, the dynamic range of the thermal strain measurement would be 0.12 to 1600 ppm (assuming a 1 mm diameter laser spot). Or, in terms of integrated CTE (293-30 K), it would be 0.5 ppb/K to 6.1 ppm/K; this covers a very wide range of materials, from fused silica & ULE up to beryllium & silicon carbide, without any reconfiguration of the system or samples

GENERATING TWO PARALLEL LASER BEAMS

(MSFC 4' CRYOGENIC CHAMBER)

- I = 266.7 cm
- Sample (3-4 ULE) L = 2.54 cm
- Reference (Zerodur) L=2.54 cm
- Platform Zerodur, side face coated
- Reference Rod (Zerodur) D= 2.54 cm, face coated

SMALL CRYOGENIC CHAMBER AT NASA/MSFC

SYSTEM WITH PSD AMPLIFICATION AND READOUT MODULES

SYSTEM WITH DISTANCE MEASUREMENT DEVICE AT THE TOP

CRYOGENIC CHAMBER WINDOW FACING INCIDENT LASER BEAMS

TURBULANCE EFFECTS

- On both detectors ± 0.013 mm
- Very periodic; period ≈ 1 minute
- \bullet Fair to assume that \pm 0.001 mm or \pm 1 μm or better can be obtained

INITIAL RESULTS (September 9, 2003)

Experiment range while cooling 296.61° K – 68.222° K

Zerodur data:

LUTE Study Materials Data, Max Nein (2-27-02)

Results (from SRI data):

within 0.5 PPM for most readings; 7 % at 68.22 °K

FUTURE PLANS

- Experiments with different samples
- Temperature stabilization
- Sample/reference/probe holding
- Computer data averaging

CONCLUSIONS

It appears after some system related improvements, the calculated sensitivity can be attained. Please notice that the cryogenic chamber and laser/detector module are at room floor

ACKNOWLEDGEMENTS

This effort was supported by NASA/MSFC. Technical help of several people at MSFC particularly Bill Hogue and Jeff Kegley, and Ted Rogers of UAH is highly appreciated.